日本環境変異原ゲノム学会 50 年史

西曆	和暦	学会長	所属	年大会	大会長	所属	開催地	関連トピックス
1969	昭和 44 年							米国 EMS 設立
1970	昭和 45 年							第1回米国 EMS
1971	昭和 46 年							AF-2:金魚問題 / 培養ヒトリンパ球に CA
1972	昭和 47 年	田島彌太郎	国立遺伝学研究所	第1回	田島彌太郎	国立遺伝学研究所	東京	日本環境変異原研究会発足;JemsNews 発刊
1973	昭和 48 年			第2回	田島彌太郎	国立遺伝学研究所	三島	AF-2 変異原性問題;1st ICEM(アシロマー)
1974	昭和 49 年			第3回	外村 晶	東京医科歯科大学	東京	AF-2 発がん性問題⇒食添使用禁止
1975	昭和 50 年			第4回	菅原 努	京都大学	京都	Ames 試験連絡協議会発足
1976	昭和 51 年			第5回	杉村 隆	国立がんセンター	東京	
1977	昭和 52 年			第6回	近藤宗平	大阪大学	吹田	日本環境変異原学会に改組; 2nd ICEM (エジンバラ)
1978	昭和 53 年	杉村 隆	国立がんセンター	第7回	賀田恒夫	国立遺伝学研究所	三島	
1979	昭和 54 年			第8回	岩原繁雄	食品薬品安全センター	箱根	奨励賞創設;学会誌 環境変異原研究発刊;安衛法 Ames 試験開始
1980	昭和 55 年			第9回	早津彦哉	岡山大学	岡山	
1981	昭和 56 年			第 10 回	石館 基	国立衛生試験所	東京	3rd ICEM(東京)
1982	昭和 57 年	賀田恒夫	国立遺伝学研究所	第 11 回	黒田行昭	国立遺伝学研究所	修善寺	大会に改称;MMS 研究会発足
1983	昭和 58 年			第 12 回	大西克成	徳島大学	徳島	医薬品遺伝毒性試験ガイドライン
1984	昭和 59 年			第 13 回	白須泰彦	残留農薬研究所	東京	
1985	昭和 60 年			第 14 回	滝澤行雄	秋田大学	秋田	4th ICEM(ストックホルム)
1986	昭和 61 年	松島泰次郎	東京大学	第 15 回	松島泰次郎	東京大学	東京	
1987	昭和 62 年			第 16 回	西岡 一	同志社大学	京都	
1988	昭和 63 年			第 17 回	長尾美奈子	国立がんセンター	東京	
1989	平成元年			第 18 回	松下秀鶴	国立公衆衛生院	東京	5th ICEM(クリーブランド)
1990	平成2年	早津彦哉	岡山大学	第 19 回	常盤 寛	福岡県衛生公害センター	福岡	
1991	平成3年			第 20 回	渡部 烈	東京薬科大学	東京	
1992	平成4年			第 21 回	鎌滝哲也	北海道大学	札幌	
1993	平成5年			第 22 回	祖父尼俊雄	国立衛生試験所	東京	6th ICEM/1st IWGT(メルボルン)
1994	平成6年	祖父尼俊雄	国立衛生試験所	第 23 回	木苗直秀	静岡県立大学	静岡	学会賞・研究奨励賞創設
1995	平成7年			第 24 回	森本兼曩	大阪大学	吹田	Ames 試験連絡協議会が BMS 研究会に改称

1996	平成8年			第 25 回	清水英佑	東京慈恵会医科大学	東京	ICH ガイドライン(S2A)
1997	平成9年			第 26 回	澁谷 徹	食品薬品安全センター	秦野	7th ICEM(ツールーズ)
1998	平成 10 年	大西克成	徳島大学	第 27 回	菊池康基	ラビトン研究所	大阪	ICH ガイドライン(S2B)
1999	平成 11 年			第 28 回	森 秀樹	岐阜大学	岐阜	2nd IWGT(ワシントン)
2000	平成 12 年	木苗直秀	静岡県立大学	第 29 回	山添 康	東北大学	仙台	JEMS 理事会制度導入
2001	平成 13 年			第 30 回	出川雅邦	静岡県立大学	静岡	8th ICEM (静岡)
2002	平成 14 年	林 真	国立医薬品食品衛生研究所	第 31 回	菊川清見	東京薬科大学	東京	功労賞創設;3rd IWGT(プリモス)
2003	平成 15 年			第 32 回	川西正祐	三重大学	津	
2004	平成 16 年	能美健彦	国立医薬品食品衛生研究所	第 33 回	渡邉正己	長崎大学	長崎	
2005	平成 17 年			第 34 回	降旗千惠	青山学院大学	東京	9th ICEM/4th IWGT(サンフランシスコ)
2006	平成 18 年	若林敬二	国立がんセンター	第 35 回	八木孝司	大阪府立大学	堺	学会誌英文誌化(Genes and Environment; G&E);コメット試験バリデーション開始
2007	平成 19 年			第 36 回	葛西 宏	産業医科大学	北九州	1st ACEM(北九州); 8th ISCA(淡路)
2008	平成 20 年	八木孝司	大阪府立大学	第 37 回	林	国立医薬品食品衛生研究所	宜野湾	
2009	平成 21 年			第 38 回	下位香代子	静岡県立大学	静岡	10th ICEM(フィレンツェ);5th IWGT(バーゼル)
2010	平成 22 年	山添 康	東北大学	第 39 回	青木康展	国立環境研究所	つくば	2nd ACEM (パタヤ)
2011	平成 23 年			第 40 回	能美健彦	国立医薬品食品衛生研究所	東京	G&E に BPA 創設
2012	平成 24 年	葛西 宏	産業医科大学	第 41 回	若林敬二	静岡県立大学	静岡	ICH ガイドライン(S2(R1));3rd ACEM(杭州)
2013	平成 25 年			第 42 回	須藤鎮世	就実大学	岡山	11th ICEM/6th IWGT(イグアス)
2014	平成 26 年	青木康展	国立環境研究所	第 43 回	宇野芳文	田辺三菱製薬	東京	4th ACEM(コルカタ): コメット試験 OECD TG489
2015	平成 27 年			第 44 回	續輝久	九州大学	福岡	ICH ガイドライン(M7); G&E オープンアクセスオンラインジャーナルに(BMC); Web 選挙開始
2016	平成 28 年	宇野芳文	田辺三菱製薬	第 45 回	羽倉昌志	エーザイ	つくば	
2017	平成 29 年			第 46 回	濱田修一	LSI メディエンス	東京	12th ICEM/5th ACEM (インチョン):7th IWGT (東京)
2018	平成 30 年	本間正充	国立医薬品食品衛生研究所	第 47 回	松田知成	京都大学	京都	ICH ガイドライン (M7 (R1))
2019	令和元年			第 48 回	本間正充	国立医薬品食品衛生研究所	東京	6th ACEM(東京)
2020	令和2年	三島雅之	中外製薬	第 49 回	三島雅之	中外製薬	沼津	G&E:IF1.872 取得
2021	令和3年			第 50 回	山田雅巳	防衛大学校	横須賀	日本環境変異原ゲノム学会に改称

日本環境変異原ゲノム学会 学会各賞受賞者一覧

-mr. 155	de EC	奨励賞((1979 [昭和 54	年]~1993[平成5年])・何	研究奨励賞 (1994 [平成 6 年] ~)			学 会 賞 (1994 [平成 6 年] ~)			功 労 賞 (2002 [平成 14 年]~)
西曆	和曆	氏 名	所 属		受賞題目	氏 名	所 属	受賞題目	氏 名	所 属		賞題目
1979	昭和 54 年	長尾美奈子	国立がんセンター	- 食品の変異原因子に関す	る研究							
			国立衛生試験所	所 環境変異原および癌原物質の	の染色体異常によるスクリーニング							
1980	昭和 55 年	常盤 寛	福岡県	大気中の変異原性汚染物	質の実態の調査と研究							
1981	昭和 56 年	賀田恒夫			Rec-assay の開発とその応用							
1000	1177.45H E.F. A:	松島秦次郎	東京大学	変異原性検出による化学	物質の発癌性評価についての研究							
1982	昭和 57 年	早津彦哉	岡山大学	環境中の変異原物質の作	用機作に関する化学的研究	•						
1983	昭和 58 年	葛西 宏	国立がんセンター	_ 加熱食品中の強力な変異 ダゾキノサリンの発見	原イミダゾキノリンおよびイミ							
1984	昭和 59 年	大西克成	徳島大学	環境中のニトロピレン類	の検出および代謝に関する研究							
1985	昭和 60 年	若林敬二	国立がんセンタ-	- 食品中の新しい変異原前	駆物質の研究							
		林 真	国立衛生試験所	所 In vivo 小核試験法の基礎	巻と応用に関する研究							
1986	昭和 61 年	森本兼曩	大阪大学	ヒト末梢リンパ球におけ 発に関する研究	る姉妹染色分体交換(SCE)誘							
1007	昭和 62 年	梁 治子	大阪大学	ショウジョウバエによる	環境変異原検出系に関する研究							
1901	四和 02 平	藤川和男	武田薬品工業	き ショウジョウバエによる	環境変異原検出系に関する研究							
		土川 清	国立遺伝研	マウス・スポットテスト	系の確立							
1988	昭和 63 年	降旗千惠	東京大学		in vivo 短期評価法の開発と応用							
		山添 康		牟 環境変異原の酵素的活性								
1989	平成元年	有元佐賀惠			性化合物の変異原活性阻害の研究							
					す要因の解析とその協力研究の推進							
1990	平成2年	異紘一		ヒト細胞を用いた環境変								
1001	正式 9 年			★ メチル基置換芳香族炭化 ★ 会日 原葉日中東の恋思院								
1991	平成3年	剁川宿兄	果兄柴件人子		原物質の分離・同定とその生成機構 マミンに京成の性の							
1992	平成4年	能美健彦	国立衛生試験所	" ネラ菌株の開発	アミンに高感受性を示すサルモ							
	77 -b = 4-	鎌滝哲也	北海道大学	変異原物質の代謝的活性 P-450の基礎的・応用的	化に関与するチトクローム J研究							
1993	平成5年	木内武美	徳島大学	変異原物質の腸内菌によ	る代謝に関する研究							
		糠谷東雄	静岡県立大学	牟 食品中の変異原物質の分	離同定							
1994	平成6年			芒 香料成分の抗変異原性作		杉村 隆	国立がんセンター	ヘテロサイクリックアミンの変異・がん原性に関す	ス研究			
1334	1 74 0 7	高橋和彦	名古屋市立大学	学 アルキル化剤による変異	誘発に対する修飾作用の分子機構	45.11 LEF	国业470007	1, ロケイン アプラテス・ジス条 が70水圧に因う	- JUL 1917 C			
1995	平成7年	荒木明宏	日本バイオアッセー 研究センター	^イ 気相曝露による微生物変	異原性試験法の開発とその利用	松皂奏次郎	JB 日本バイオアッセイ 研究センター					
1555	1,1,1,7	下位香代子		左 突然変異修飾因子の検索	とその作用機構に関する研究	は西水では						
	b - t-	根岸友惠			いた変異原性修飾因子の研究	ET NA SA IN						
1996	平成8年			/ 染色体異常試験における		早津彦哉	岡山大学	環境中の変異原の検出とその抑制因子に関する研究				
1997	平成9年	世良暢之	福岡県保健環境研究所	デニトロアレーンの構造・ 変	E異活性相関およびヒト暴露の実態	石館 基	オリンパス 光学工業	染色体異常を指標としたがん原性物質検出法の開発	と評価			
		佐々木有	八戸高専	コメットアッセイを用い	たマウス多臓器 DNA 損傷の検出			晴到 箱位差細胞を用いた悪仁子の歴亦用の松山 1.4	14:11:			
1998	平成 10 年	山田雅巳	国立衛研	遺伝子工学的手法を用い ネラ試験菌株の作製とそ	たアルキル化剤高感受性サルモ の応用	黒田行昭	国立遺伝研	哺乳類培養細胞を用いた遺伝子突然変異の検出と払 関する研究	1市11 (~			
1000	亚出 11 左	宇野芳文	三菱東京製薬	複製 DNA 会成 (RDS) ■	試験法を応用した非変異・肝癌	FP辛女フ	市古典紫上兴	食品中変異原・癌原物質の発見と発がん機構の分子	-生物			
1999	平成 11 年		原性物質の快田系 渡辺徹志 京都薬科大学 大気・土壌中の変		質の完量的評価に関する研究	区尾天宗丁	東京農業大学	学的研究				
		布柴達男	東北大学		と突然変異誘発機構に関する研究							
2000	2000 平成 12 年	本間正充	国立衛研		え修復を介した遺伝的安定化機構	祖父尼俊雄	ノバスジーン	変異原研究領域におけるレギュラトリーサイエンス	の確立			
2001	亚出 12 年	平木一去	東京薬科大学	フローラジカルな終由す	る環境変異・発がん物質の生成	上 而古代	徳自士学	が用。存居林陽所の立中、心難し <u>え</u> の活起が問題に用え	7 TII 7'S			
2001	2001 平成 13 年	若田明裕	山之内製薬		体を用いる小核試験法の検討	大西克成	心局八子	変異・癌原性物質の産生・代謝とその活性抑制に関	⊘刊九			
		鈴木孝昌	国立衛研		変異原性試験の有用性に関する研究							
2002	平成 14 年	.,	残留農薬研究所	上甲帯にかけてぬ桝亦田	スペクトルの簡易解析法の開発	木苗直秀	静岡県立大学	生活環境中の変異原物質の分離同定とそれらの腫瘍 との関連性に関する研究	発生 菊池康基	国際医薬品 臨床開発研究所	所 In vivo 遺伝毒性試験の基礎	性的研究とガイドラインへの適応
				. 247 9 19176								

003 平成 15 年		エーザイ	化学物質による in vitro および in vivo における突然変異の定量的解析に関する研究	菊川清見	東京薬科大学	食品中の変異・発がん物質の生成と DNA 損傷性および その低減に関する有機化学的研究			
	戸塚ゆ加里	ゆ加里 国立がんセンター Norharman の co-mutagenic 作用機構に関する研究				CO EMPAT-PA / O II BATO I ASSISTA			
2004 平成 16 年	高村(塩谷) 岳樹	国立がんセンター	- 環境から分離した新規変異原物質の DNA 修飾に関する研究	林 真	国立衛研	げっ歯類を用いる小核試験の基礎研究ならびにその行政 面への応用	田中憲穂	安全センター と	E殖細胞および培養細胞を用いた遺伝毒性試験法の開発 E国際標準化への貢献
	111787					山、マグルン方	西岡 一	サイエンス研究所	E異原および抗変異原の作用機構に関する研究とその振興
2005 平成 17 年		共立薬科大学	学 N-ニトロソ化合物の活性化体の性質に基づいた制がん性 リード化合物の創製	AND halle hard at	北海道大学	環境変異原物質の代謝活性化に関わる酵素の分子生物学		7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	福原 潔	国立衛研	抗変異原物質をめざしたカテキン類の平面固定化反応に 関する研究	- 鎌滝哲也		および分子疫学的研究			
006 平成 18 年	及川伸二 紙谷浩之	三重大学	癌原物質および抗酸化物質による DNA 酸化損傷機構の解析 DNA 前駆体の酸化損傷による変異の分子機構とその防御 システムの解明	能美健彦	国立衛研	環境変異原物質の新規検出系の作出およびYファミリー DNA ポリメラーゼの分子遺伝学的解析	島田弘康		医薬品の安全性評価における各種遺伝毒性試験の適用と 国際調和 への貢献
007 平成 19 年	倉岡 功	九州がんセンター	ヒト細胞における DNA 損傷のヌクレオチド除去修復機構に関する研究	葛西 宏	産業医科大学	DNA 酸化損傷としての8 - ヒドロキシデオキシグアノシ ンの発見とそのは物学的音楽			
		京都府立大学	京野菜に含まれる抗変異原の同定とその作用機構			ンの発見とその生物学的意義			
008 平成 20 年	増村健一	国立衛研	gpt delta トランスジェニックマウス試験系を用いた点突 然変異と欠失変異の選択的検出	若林敬二	国立がんセンター	環境中に存在するがんの原因物質に関する有機化学的、 分子生物学的研究	望月正隆		有機化学的アプローチによる環境変異原の作用機構解析 と制がん研究への応用
00 77-7-01 64	松田知成	京都大学	LC/MS/MS を用いた DNA 付加体の網羅的解析に関する研究	more set to	鈴鹿医療科学	環境変異・発がん因子による活性酸素と活性窒素の生成	Shiring day of	大阪女学院 -	. White the branch and a work-last and a Table
09 平成 21 年	三浦大志郎	帝人ファーマ	然変共計Ⅲポの用光	川西正祐	大学	を介した DNA 損傷機構	浅野哲秀	短期大学	n vivo 遺伝毒性試験の発展と学術交流への貢献
10 平成 22 年	竹入 章	中外製薬	gpt delta マウスおよびその由来細胞を用いた DNA クロスリンク剤の変異誘発機構	降旗千惠	国立衛研	環境変異原・がん原物質の臓器特異的短期評価法に関す る研究			
11 平成 23 年	伊吹裕子	静岡県立大学	とストン修飾を指標とした環境化学物質と光の複合影響 に関する研究	八木孝司	大阪府立大学	シャトルベクタープラスミドを用いた哺乳類細胞突然変 異解析系の構築と応用			
12 平成 24 年	稲見圭子	東京理科大学	・ 化学モデル系を用いた代謝活性化機構の解明とその応用	山添 康	東北大学	薬物代謝評価系の開発および基質特異性予測の研究			enes and Environment のレベル向上および国際化への貢 :殖細胞の突然変異研究および環境エピゲノミクス研究の推演
13 平成 25 年	川西優喜	大阪府立大学	大気に由来する多環芳香族炭化水素による突然変異生成 メカニズムの研究	- 下位委代子	- 醬岡頂立士受	植物成分の抗変異原性効果に関する遺伝学的生化学的研究	3		
2013 千成 25 年 1	安井 学	国立衛研	DNA 付加体を部位特異的に含む DNA オリゴマーの構築 とその突然変異誘発機構の解析	1 12 11 (1	中野中	1E物成为*/加久界外压初水1C内; 公总区于由土16于时间几			
							髙橋和彦		E異機構研究会の継続的開催を通した若手研究者育成への貢献
14 平成 26 年	成見香瑞範	ヤクルト本社	: 成熟ラットを用いた反復投与肝小核試験法の開発に関する研究	根岸友惠	岡山大学	ショウジョウバエを用いた紫外線およびアルキル化剤誘発 DNA 損傷とその修復機構に関する研究	林 真		v ギュラトリーサイエンスにおける遺伝毒性試験の国際 的協調に対する貢献
15 平成 27 年	和田邦生	残留農薬研究所	「コメットアッセイを用いた膀胱上皮細胞における遺伝毒 性評価法の開発	本間正充	国立衛研	部位特異的損傷をゲノム中に導入したヒト細胞における 突然変異誘発機構の研究			
16 平成 28 年	喜納克仁		グアニン酸化損傷の生成およびその修復・複製に関する研究 γ H2AX を指標とした異数性誘発物質の新規検出法の確	青木康展	国立環境研	環境変異原によって誘発された生体内突然変異の解析と そのリスク評価	小田美光		数生物の SOS 反応を利用した umu 試験の開発とその国 経貢献
	松﨑香織	中外製薬	立とその医薬品開発への応用			てのリハク計画		短烟八子 肉	r 貝 M
17 平成 29 年	松田 俊	富士フィルム	DNA 損傷応答の定量化および可視化に関する研究	續 輝久	九州大学	遺伝子改変マウスを用いた酸化 DNA 損傷に起因する発 がん機序の解明	森田 健	国立衛研 遺	貴伝毒性試験法の最適化と国際標準への貢献
18 平成 30 年		帝人ファーマ	および技術を盛り惟立		田辺三菱製薬	遺伝毒性作用機序に基づくリスク評価と in vivo コメット			
010 1成30平	堀端克良	国立衛研	Pig-a アッセイの標準化に関する研究:バリデーション研究の推進ととトへの適用		50.505	アッセイの国際的な標準化に関する研究			
)19 令和元年	石井雄二	国立衛研	遺伝子改変げっ歯類を用いる DNA 付加体解析を始めと する遺伝毒性機序解明	紙谷浩之	広島大学	損傷 DNA およびその前駆体を用いる変異の誘発および 抑制機構の解明			
	本田大士	花王	遺伝毒性発がん性予測への機械学習の適用						
20 令和2年	鈴木哲矢 堀妃佐子	広島大学 サントリー MONOZUKURI	遺伝子改変細胞を用いた変異誘発制御の分子機構の解明 ,動物 3R を考慮したトランスジェニックラット包括的遺伝	濱田修一		一般毒性試験への組込みを可能としたラット反復投与赤 血球・肝臓小核試験の開発	加藤雅之	シミックファーマ サイエンス	ames 試験の精度および信頼性向上への貢献
		エキスパート	¹ 毒性試験系の構築 DNA 損傷に着目した人工エストロゲンの発がんリスク低			TABLE STATE OF TABLE STATE STATE OF THE STATE OF THE STATE OF TABLE STATE OF TABL		,, ,,,,	
)21 令和3年	岡本誉士典	名城大学	滅に関する基盤研究 小枝試験の悪液化に向ける TVG 細胞の異粒性小枝誘発機	- 鈴木孝昌	国立衛研	トランスジェニック動物およびオミクス解析を基盤とし た新たな変異原性研究の確立	松元郷六	残留農薬研究所 3	ら色 FISH による染色体異常新規検出系の確立ならびにレギュラ ・リサイエンスにおける in vivo 試験系の精度向上に対する貢献
	橋本清弘	武田薬品工業	構に関する研究						